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Abstract— In this paper, we propose a memory efficient 
algorithm for maximal frequent itemset mining from 
transactional datasets. We propose OP-MAX* (Order 
Preserving – MAXimal itemset mining) algorithm, which 
mines all the maximal itemsets from transactional datasets 
with less space and time.  Our methodology uses a memory 
efficient maximality checking technique to generate 
frequent maximal itemsets. We have also incorporated 
several optimization techniques to improve the mining 
efficiency. Experiments involving publicly available datasets 
show that our algorithm takes less memory and less 
computation time than other algorithms in most cases. 
 
Index Terms— Data Mining – Closed Itemsets – Maximal 
Itemsets - Algorithms 

I.  INTRODUCTION 

     Frequent itemset mining is fundamental to several data 
mining tasks including Association Rule Mining 
[5][11][12], life science data analysis[1] and social 
network analysis[9]. The problem is stated as follows. 
Given a collection of transactions with each transaction 
consisting of set of items, a frequent itemset is a subset of 
a set of items that occur in at least a user specified 
percentage (support) of the transactions.  Frequent 
itemset mining is a computationally demanding task and 
has been an active area of research in the field of data 
mining. Several algorithms have been proposed to mine 
frequent itemsets including Apriori, F-Apriori, FP-
growth[15], FP-growth*[6] and Transaction Mapping 
Algorithm[5]. But the main drawback is “too many 
frequent itemsets”. For example, if the itemset length is x, 
then 2x frequent itemsets would be generated.  To 
overcome the “too many itemsets” disadvantage, closed 
itemset concept was proposed [11].  The set of closed 
itemsets of the given transactional database is the 
condensed representation of the set of all frequent 
itemsets without any loss of information. A frequent 
itemset is said to be closed if it has no superset with the 
same frequency (support).  Several algorithms have been 
proposed in the literature including A-Close, FP-
Close[6], AFOPT-Close [16], B-Miner & C-Miner [1], 
and DCI-Close [2].  However, when there are very long 
itemsets present in the dataset, the generation of all the 
frequent closed itemsets is not trivial and it suffers from 
the same problem as frequent itemsets.  To further 
condense the set of frequent closed itemsets, Maximal 
itemset concept was proposed.  A frequent itemset is said 

to be maximal if none of its supersets are frequent.  
Several algorithms have been proposed including 
AFOPT-Max[16], FP-Max[6], MAFIA[7] and Eclat-Max. 
However, mining all the maximal itemsets from the given 
dataset is computationally more expensive than frequent 
closed itemset and frequent itemset mining.  This is 
because there is no relationship between any two 
maximal itemsets and all the maximal itemsets are unique 
to each other, whereas all the frequent closed itemsets can 
be related either by subset or superset relationship with 
respect to each other.   Moreover, it has been proven that 
the complexity class of maximal itemset mining is NP-
hard [8].  Several algorithms for mining maximal itemsets 
are based on the enumeration of frequent itemsets and it 
outputs maximal itemsets among them. Unlike frequent 
itemsets, this requires the itemsets to be stored in the 
main memory for maximality checking and consumes 
much main memory. 

 This paper proposes OP-MAX* (Order Preserving-
MAXimal Itemset Mining) algorithm to enumerate 
maximal frequent itemset using order preserving 
generators [2] with fast and memory efficient maximality 
checking.  We have already proposed two algorithms in 
this area: OP-MAX [3] and OP-MAX+ [4].  OP-MAX 
stores all the maximal closed itemsets in main memory 
and generates maximal itemsets among them whereas 
OP-MAX+ uses closed transaction sets to enumerate 
maximal itemsets. OP-MAX and OP-MAX+ stores 
intermediate itemsets in main memory whereas OP-
MAX* computes all maximal itemsets without storing 
intermediate results in the main memory. The rest of the 
paper is organized as follows. Section II gives the 
preliminaries, section III presents the proposed algorithm, 
section IV gives the experimental results and section V 
concludes the paper. 

II.  PRELIMINARIES 

      In the context of association rule mining, a database 
D is a triple D={T,I,R}, where T and I are finite set of 
transactions and items respectively. R ⊆ T x I  is a binary 
relation between transactions and items.  Each pair (t,i) 
∈ R denotes the fact that the transaction t ∈ T is related to 
the item i ∈ I. An itemset X ⊆  I is frequent if support 
count of X exceeds user defined minimum support.  An 
itemset X ⊆ I is a maximal itemset if there exists no other 
itemset X′ such that X′ is frequent and X ⊆ X′.  For more 
details on order preserving generators, readers may refer 
[2] [3] [4]. 
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III. MAXIMAL ITEMSET MINING 

     OP_MAX* computes the set of maximal frequent 
itemsets from the set of frequent closed maximal itemsets 
using the pre_set  [2][3][4] elements.  It should be noted 
that the algorithm OP-MAX* does not store any closed or 
maximal itemset in the main memory and hence the 
algorithm is highly memory efficient.  The space 
complexity of our algorithm is O(D), where  D is the 
input dataset.   

A. OP-MAX* Algorithm 
     Let D denote the given dataset, Ξ  denote the set of 
frequent closed maximal itemsets of D and Ψ  denote the 
set of maximal itemsets of D. Then, Ψ Í  Ξ  and all 
closed itemsets X Î  Ξ are  leaf nodes in the tree.  It 
should be noted that the closed itemset mining using 
order preserving generators explore the closed itemset 
lattice in depth first manner with all of its leaf nodes as 
maximal closed itemsets.  All the elements from the 
post_set that successfully contributed a new valid 
generator are stored in pre_set for duplicate checking.  
The OP-MAX* algorithm exploits this concept for fast 
and memory efficient maximality checking.  Let Ι be the 
set of items and X be a frequent itemset. In maximality 
checking, we check whether X ∪ i is frequent where i Î Ι \ 
X. if $ i such that X ∪  i is frequent then X is not a 
maximal itemset and if Ø$ i such that X ∪  i is frequent 
then X is a maximal itemset.  In OP-MAX* algorithm, we 
check whether X′ ∪  i is frequent where X′ is a leaf node 
and i Î pre_set(X′).  Since we accomplish maximality 
checking with less number of items from the pre_set, our 
algorithm takes less running time than other algorithms.  
It should be noted that the number of elements present in 
pre_set(X′) is usually lesser than the number of elements 
in X′\Ι. We have also incorporated several optimization 
techniques and one such technique is itemset ordering 
which is explained in the next section. 

B. Itemset Ordering 
     The order in which the items are processed play a vital 
role in reducing the amount of computation in the depth 
first exploration of the search space.  The aim is to 
reduce, as soon as possible, the elements in the post_set 
which limits the depth of the search space tree and also to 
reduce the number of elements scanned in pre_set for 
duplicate detection.  To accomplish this, we sort all the 
post_set elements in their support ascending order and the 
processing is carried out in the same order i.e. items with 
small support are processed first.  Also, all the items are 
sorted with respect to its support and are remapped to 
continuous integer space starting from zero.  While 
processing item i, all the elements that succeed i are 
placed in pre_set in their ascending order  and all the 
elements that precede i are placed in the post_set in 
descending order.  The advantage of ordering all the 
elements in the pre_set in their support descending order 
and all the elements in the post_set in their support 
ascending order is two fold.  Firstly, it reduces the 
computations needed for duplicate detection and 
secondly, it reduces the computations in computing 
closures as explained below. Order preserving algorithm 

builds the generator by adding various elements from 
post_set to closed_set and the validity of the generator is 
tested using elements in the pre_set.  If the generator 
satisfies minimum support and is not a subset of any of 
the elements in the pre_set then the generator will lead to 
a closed itemset.  By ordering the post_set elements in the 
support ascending order, we reduce the post_set items to 
the maximum extent in every closure computation and 
this limits the depth of the recursive tree. Also, since the 
items in the post_set are reduced to minimum, it saves the 
computation in every level of the search space tree.  Note 
that, all the elements in the post_set are processed for 
subset checking with g(closed_set) for computing the 
closure.  By ordering the elements of pre_set in their 
support descending order, we considerably reduce the 
total number of elements processed for duplicate 
detection. The concept is based on the following fact: “a 
generator of the closed itemset is more likely to be the 
subset of items with high support than the items with low 
support”.  The ordering of elements in the post_set in its 
support ascending order not only save the amount of 
computation involved in computing the closure but also 
reduces the items processed from pre_set in detecting 
duplicate generators.   

C. OP-MAX* Pseudocode 
     This section presents OP-MAX* pseudocode. The 
algorithm takes two parameters as input: transactional 
dataset, and the minimum support value and it output all 
the maximal itemsets that satisfy min-support constraint. 

 
INPUT: transactional dataset, min-support 
OUTPUT: all maximal itemsets satisfying support 
constraints  
1. Compute F1 (frequent-1 items}, sort F1 items based 

on their support and map to continuous integer space 
2. " i Î  F1  
3.     pre_set = { i′ Î F1 | i′ f i } 
4.     closed_set = null 
5.     post_set =i ∪ { i′ Î F1 | i′ p i } 
6.     reorder the vertical bit-vector space such that 
                supporting transactions of i are consecutive 
                in its bit-vector space. 
7.     tid_setc = { set of transactions supporting 

closed_set } 
8.    OP-MAX*(post_set, closed_set, pre_set, tid_setc ) 

 
9. OP-MAX*( post_set, closed_set, pre_set, tid_setc ) 
10. { 
11.      while (post_set!=null) 
12. z:     i′′=min(post_set) 
13.         tid_setg = tid_setc ∩ g(i′′) 
14.         if | tid_setg |>min_support && 

                  ( " j Î pre_set,  tid_setg Ë g(j))   
15.             write closed_set, post_set,  
                           pre_set ∪ i′′, tid_setc to stack 
16.             closed_set=closed_set ∪  i′′ 
17.            " k Î post_set 
18.                 if tid_setg Í  g(k)    
19.                      closed_set=closed_set ∪ k 
20.                      post_set=post_set \k 
21.                endif 
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22.             tid_setc = tid_setg 
23.             write closed_set to disk 
24.         else 
25.              if    (post_set!=null)  goto z:   endif 
26.         endif 
27.         if  (post_set==null && stack is not empty)  
28.                  if  $ r Î pre_set  and  
                              support(closed_set ∪ r) > minsupp 
29.                              discard the closed_set  
30.                  else 
31.                             output the closed_set as maximal 

itemset 
32.                  endif 
33.                  pop from stack to closed_set, preset, 
                                                post_set and tid_setc 
34.         endif 
35.         if (closed_set==null)   
36.                 return   
37.         endif 
38.     endwhile 
39. } 

D. Pseudocode Description 
     The algorithm uses three sets (pre_set, post_set and 
closed_set) as used in [2]. Besides, it uses three sets F1 
and tid_set.  F1 is used to store the set of frequent-1 items 
whereas tid_set is used to store the set of supporting 
transactions of the current closed itemset The algorithm 
uses a stack to store the necessary information for 
backtracking and the stack structure contains four sets 
(pre_set, post_set, closed_set and tid_set).  Whenever, an 
extension of closed itemset is found to be closed, the 
previous itemset is pushed to the stack along with its 
pre_set, post_set and tid_set (line no 15).  For example, 
let X and Y be a closed itemset and Y Ê X.  Whenever Y 
is generated, X will be pushed to stack. When X is 
popped, all other itemsets Y′ will be generated where Y′ ≠ 
Y and Y′ Ê X.  After popping from the stack, if the 
closed_set is null, the procedure returns. The condition 
indicates that all closed itemsets that start with the item i 
are generated. It should be noted that the associated 
post_set of all the leaf nodes of the depth first search tree 
is empty and all leaf nodes form a set of closed maximal 
itemsets.  Since the subset of leaf nodes form a set of 
maximal itemsets, we incorporate maximality checking 
(line no 28-32) whenever we pop from the stack.  Before 
we pop from the stack, we check whether closed_set ∪  i 
is  frequent  where  i Î pre_set.    If  Ø$ i  such  that 
closed_set  ∪  i  is  frequent,  we  output  the  closed 
itemset as maximal itemset.  The existence of i, such 
that  closed_set  ∪  i  is  frequent,  indicates  that  there 
exists another closed itemset X and X is a superset to 
current closed_set. Hence the current closed_set is not 
maximal and is discarded. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

      We have implemented our algorithm using C 
language and the code was compiled using 32-bit 
Microsoft Visual C++ compiler. All the experiments were 
conducted on Pentium 4 machine with 1 GB of main 
memory loaded with windows XP operating system.  The 

executables of other algorithms were obtained from the 
respective authors.  The description of the datasets used 
in our experiments is given in Table 1. Among the 
datasets, gazelle (also known as BMS Webview) is a real 
dataset derived from click-stream data and accidents 
dataset contains (anonymized) traffic accident data. 
Connect and chess datasets are mathematically structured 
datasets derived from their respective game types. 
T25I20D10k and T10I4D10k datasets are synthetic 
datasets generated from IBM synthetic dataset generator. 
The dataset generator is downloaded from Illimine 
project’s website.  For TxIyDz, x indicates the average 
transaction length, y indicates the average itemset length 
and z indicates the total number of transaction instances.     

 
Table 1. Datasets Used 

Sl.No Dataset Name Total  
Items 

Total  
Transactions 

1 gazelle 497 59601 
2 accidents 468 340183 
3 connect 42 8196 
4 pumsb-star 7117 49046 
5 chess 75 3196 
6 retail 16470 88162 
7 T25I20D10k 1000 10000 
8 T10I4D10k 1000 10000 

 
To obtain the accurate peak memory usage of executions, 
we have written our own stub code using windows 
process library API that will fetch the main memory 
usage statistics whenever a process is terminated. Since 
we extract the needed information from the windows 
kernel itself, the load made by this program on the 
memory and the processor is completely negligible.  We 
have checked the running times while running this piece 
of code in background and while this software was not 
running in background.  The observed differences are 
only in microseconds and in most cases we didn’t observe 
any difference. The experimental results given in Table 2 
show that OP-MAX* algorithm takes less running time 
than other algorithms in most cases. Similarly, Table 3 
and Table 7 show the total running time taken for 
accident and pumsb-star dataset respectively.   

 
 

Table 2: Total Running time taken for gazelle dataset 
Supp-

ort 
Running time in Seconds (gazelle) 

FP-MAX AFOPT OP-MAX* MAFIA 
59 0.796 2.312 0.609 4.453 
54 0.813 2.375 0.75 4.625 
48 0.828 2.469 1.031 4.859 
42 0.906 2.672 1.781 5.328 
36 1.312 3.5 4.14 5.828 
30 2.61 6.656 5.719 10.312 
24 1.297 13.641 6.907 14.985 
18 2.39 37.812 12.016 33.922 
12 3.141 43.484 32.422 52.250 
6 33.609 102.609 59.843 65.734 
1 573.031 1109.094 29.407 507.48 

 

© 2009 ACADEMY PUBLISHER



RESEARCH PAPER 
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009    

 

375 
 

Table 3: Total Running time for accidents dataset 
Supp- 

ort 
Running time in Seconds (accidents) 

FP-MAX AFOPT OP-MAX* ECLAT- 
MAX 

75 32.906 49.313 5.172 22.891 
70 32.953 49.484 6.766 22.937 
65 33.031 49.703 12.14 23.078 
60 33.172 50.047 24.188 23.234 
55 33.234 50.297 30.109 23.5 
50 33.375 50.906 53.156 23.875 

 
The data given in table 4 shows the peak main memory 
usage of different algorithms and the experimental data 
clearly shows that OP-MAX* takes less amount of main 
memory for its execution.  Table 5 shows the peak page 
file usage data and OP-MAX* clearly outperforms its 
competitors. The dataset connect is highly dense and 
from the results given in Table 6, our algorithm 
enumerates all maximal itemsets with very less memory. 
The other algorithms FP-MAX, LCM-MAX and MAFIA 
takes 2 times, 3 times, and 18 times more memory than 
taken by OP-MAX* algorithm respectively for a support 
value of 70.  Table 7 and Table 8 show the results for 
pumsb_star dataset while Table 9 presents the results of 
chess dataset.  Similaly, Table 10, Table 12 and Table 13 
show the results obtained from synthetic datasets.   

 
Table 4: Peak Main memory usage for accidents dataset. 
Supp- 

ort 
Peak Main-Memory usage in Bytes 

FP-MAX AFOPT OP-MAX* Eclat 
59 2109440 2109440 1597440 53608448 
54 2183168 2260992 1724416 53604352 
48 2355200 2703360 1851392 53624832 
42 3084288 4222976 1978368 53751808 
36 3665920 5140480 2060288 53792768 
30 5218304 8466432 2150400 53878784 

 
Table 5: peak page file usage for accidents dataset 

Supp- 
ort 

Peak  Page File usage in Bytes 
FP-MAX AFOPT OP-MAX* Eclat 

59 2453504 1634304 1253376 53825536 
54 2453504 1830912 1388544 53825536 
48 2453504 2224128 1523712 53825536 
42 3043328 3776512 1658880 53891072 
36 4157440 4694016 1748992 53956608 
30 6389760 8036352 1839104 54022144 

 
Table 6: Peak Memory usage for connect dataset 

Supp- 
ort 

Peak memory usage in Bytes 
FP-MAX LCM OP-MAX* Mafia 

70 2150400 12226560 933888 17510400 
65 2203648 12730368 950272 17551360 
60 2293760 13512704 978944 17608704 
55 2375680 13783040 995328 17625088 
50 2506752 14176256 1003520 17645568 

 
Table 7: Total Running time for pumsb-star dataset 
Supp- 

ort 
Running time in Seconds  

FP-MAX AFOPT OP-MAX* Mafia 
55 9.687 12.219 1.39 34.781 
50 9.688 12.266 1.703 34.844 

45 9.828 12.39 2.813 34.937 
40 9.859 12.547 4.828 35.031 
35 9.938 12.797 9.25 35.156 

 
Table 8: Peak Memory usage for pumsb_star dataset 

Supp-
ort 

Memory usage in Bytes 
FP-MAX AFOPT OP-MAX* Mafia 

55 2347008 2138112 843776 17186816 
50 2670592 2293760 892928 17297408 
45 3403776 2781184 970752 17448960 
40 4149248 3379200 1028096 17559552 
35 5173248 4612096 1089536 17686528 

 
Table 9: Peak Memory usage for Chess dataset 

Supp-
ort 

Memory Usage in Bytes 
OP-

MAX* 
LCM- 
MAX 

FP-MAX Mafia 

959 602112 4091904 10166272 21082112 
799 602112 4104192 17608704 38432768 
639 602112 4173824 33026048 74416128 
479 602112 4308992 71979008 1.59E+08 
319 618496 4304896 175685632 3.42E+08 

 
Table 10: Total running time for T25I20D10K dataset 
Supp-

ort 
Running Time in Seconds 

OP-
MAX* 

ECLAT 
MAX 

AFOPT 
-MAX 

FP-MAX 

50 5.594 6.578 12.641 11.141 
40 7.156 9.453 13.094 11.25 
30 10.828 10.485 15.14 16.485 
20 23.094 11.765 12.828 9.015 
10 155.062 435.688 26.719 16.5 

 
Table 11: Peak Memory Usage for T25I20D10k dataset 
Supp-

ort 
Memory Usage T25I20D10k 

OP-
MAX* 

ECLAT 
MAX 

AFOPT 
-MAX 

FP-MAX 

50 1568768 4739072 3960832 8486912 
40 1605632 4857856 4370432 8622080 
30 1650688 4935680 5210112 8815592 
20 1695744 5570560 6959104 9043968 
10 1748992 9912320 19210240 10031104 

 
Table 12: Total running time for T10I4D10k dataset 
Supp-

ort 
Running Time in Seconds 

OP-
MAX* 

ECLAT 
MAX 

AFOPT 
-MAX 

Mafia 

5 3.468 1.344 1.906 5.203 
4 4.422 1.453 2.188 9.101 
3 6.765 1.765 2.703 23.115 
2 15.047 3.516 4.188 29.26 
1 7.953 2249.188 13.203 404.985 

 
Table 13: Peak main memory usage for retail dataset 

Supp-
ort 

Memory Usage in Bytes 
OP-

MAX* 
ECLAT 
MAX 

AFOPT 
-MAX 

FP-MAX 

793 1835008 9728000 3969024 3436544 
705 1998848 9834496 4063232 3629056 
617 2289664 9900032 4288512 3969024 
528 2719744 10100736 4526080 4493312 
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440 3346432 10006528 4780032 5079040 
352 4448256 10321920 5103616 6082560 

 
Table 14: Total running time taken for retail dataset 
Supp- 

ort 
Time  RETAIL 

OP-
MAX* 

ECLAT 
MAX 

AFOPT 
-MAX 

FP-MAX 

793 0.953 2.766 6.969 3.906 
705 1.078 2.781 6.984 3.844 
617 1.297 2.859 7.032 3.953 
528 1.656 2.969 7.078 4 
440 2.438 3.156 7.109 3.938 
352 3.844 3.485 7.141 3.922 

 

V. CONCLUSION 

     We have proposed OP-MAX*, a fast and memory 
efficient algorithm for mining maximal frequent itemsets.  
Though our algorithm takes less memory than other 
algorithms, the problem that OP-MAX* takes more 
running time for some cases, is yet to be solved. 
Currently, we are investigating other optimization 
techniques to further reduce the running time of the 
algorithm. 
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