
RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

372

Memory Efficient Mining of Maximal Itemsets
using Order Preserving Generators

R V NATARAJ1 and S SELVAN2
1 Department of Information Technology, PSG College of Technology, Coimbatore, India.

Email: rvnataraj@mail.psgtech.ac.in
2 Department of Computer Science, St. Peter’s Engg. College, Chennai, India

Email: drselvan@ieee.org

Abstract— In this paper, we propose a memory efficient
algorithm for maximal frequent itemset mining from
transactional datasets. We propose OP-MAX* (Order
Preserving – MAXimal itemset mining) algorithm, which
mines all the maximal itemsets from transactional datasets
with less space and time. Our methodology uses a memory
efficient maximality checking technique to generate
frequent maximal itemsets. We have also incorporated
several optimization techniques to improve the mining
efficiency. Experiments involving publicly available datasets
show that our algorithm takes less memory and less
computation time than other algorithms in most cases.

Index Terms— Data Mining – Closed Itemsets – Maximal
Itemsets - Algorithms

I. INTRODUCTION

 Frequent itemset mining is fundamental to several data
mining tasks including Association Rule Mining
[5][11][12], life science data analysis[1] and social
network analysis[9]. The problem is stated as follows.
Given a collection of transactions with each transaction
consisting of set of items, a frequent itemset is a subset of
a set of items that occur in at least a user specified
percentage (support) of the transactions. Frequent
itemset mining is a computationally demanding task and
has been an active area of research in the field of data
mining. Several algorithms have been proposed to mine
frequent itemsets including Apriori, F-Apriori, FP-
growth[15], FP-growth*[6] and Transaction Mapping
Algorithm[5]. But the main drawback is “too many
frequent itemsets”. For example, if the itemset length is x,
then 2x frequent itemsets would be generated. To
overcome the “too many itemsets” disadvantage, closed
itemset concept was proposed [11]. The set of closed
itemsets of the given transactional database is the
condensed representation of the set of all frequent
itemsets without any loss of information. A frequent
itemset is said to be closed if it has no superset with the
same frequency (support). Several algorithms have been
proposed in the literature including A-Close, FP-
Close[6], AFOPT-Close [16], B-Miner & C-Miner [1],
and DCI-Close [2]. However, when there are very long
itemsets present in the dataset, the generation of all the
frequent closed itemsets is not trivial and it suffers from
the same problem as frequent itemsets. To further
condense the set of frequent closed itemsets, Maximal
itemset concept was proposed. A frequent itemset is said

to be maximal if none of its supersets are frequent.
Several algorithms have been proposed including
AFOPT-Max[16], FP-Max[6], MAFIA[7] and Eclat-Max.
However, mining all the maximal itemsets from the given
dataset is computationally more expensive than frequent
closed itemset and frequent itemset mining. This is
because there is no relationship between any two
maximal itemsets and all the maximal itemsets are unique
to each other, whereas all the frequent closed itemsets can
be related either by subset or superset relationship with
respect to each other. Moreover, it has been proven that
the complexity class of maximal itemset mining is NP-
hard [8]. Several algorithms for mining maximal itemsets
are based on the enumeration of frequent itemsets and it
outputs maximal itemsets among them. Unlike frequent
itemsets, this requires the itemsets to be stored in the
main memory for maximality checking and consumes
much main memory.

 This paper proposes OP-MAX* (Order Preserving-
MAXimal Itemset Mining) algorithm to enumerate
maximal frequent itemset using order preserving
generators [2] with fast and memory efficient maximality
checking. We have already proposed two algorithms in
this area: OP-MAX [3] and OP-MAX+ [4]. OP-MAX
stores all the maximal closed itemsets in main memory
and generates maximal itemsets among them whereas
OP-MAX+ uses closed transaction sets to enumerate
maximal itemsets. OP-MAX and OP-MAX+ stores
intermediate itemsets in main memory whereas OP-
MAX* computes all maximal itemsets without storing
intermediate results in the main memory. The rest of the
paper is organized as follows. Section II gives the
preliminaries, section III presents the proposed algorithm,
section IV gives the experimental results and section V
concludes the paper.

II. PRELIMINARIES

 In the context of association rule mining, a database
D is a triple D={T,I,R}, where T and I are finite set of
transactions and items respectively. R ⊆ T x I is a binary
relation between transactions and items. Each pair (t,i)
∈ R denotes the fact that the transaction t ∈ T is related to
the item i ∈ I. An itemset X ⊆ I is frequent if support
count of X exceeds user defined minimum support. An
itemset X ⊆ I is a maximal itemset if there exists no other
itemset X′ such that X′ is frequent and X ⊆ X′. For more
details on order preserving generators, readers may refer
[2] [3] [4].

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

373

III. MAXIMAL ITEMSET MINING

 OP_MAX* computes the set of maximal frequent
itemsets from the set of frequent closed maximal itemsets
using the pre_set [2][3][4] elements. It should be noted
that the algorithm OP-MAX* does not store any closed or
maximal itemset in the main memory and hence the
algorithm is highly memory efficient. The space
complexity of our algorithm is O(D), where D is the
input dataset.

A. OP-MAX* Algorithm
 Let D denote the given dataset, Ξ denote the set of
frequent closed maximal itemsets of D and Ψ denote the
set of maximal itemsets of D. Then, Ψ Í Ξ and all
closed itemsets X Î Ξ are leaf nodes in the tree. It
should be noted that the closed itemset mining using
order preserving generators explore the closed itemset
lattice in depth first manner with all of its leaf nodes as
maximal closed itemsets. All the elements from the
post_set that successfully contributed a new valid
generator are stored in pre_set for duplicate checking.
The OP-MAX* algorithm exploits this concept for fast
and memory efficient maximality checking. Let Ι be the
set of items and X be a frequent itemset. In maximality
checking, we check whether X ∪ i is frequent where i Î Ι \
X. if $ i such that X ∪ i is frequent then X is not a
maximal itemset and if Ø$ i such that X ∪ i is frequent
then X is a maximal itemset. In OP-MAX* algorithm, we
check whether X′ ∪ i is frequent where X′ is a leaf node
and i Î pre_set(X′). Since we accomplish maximality
checking with less number of items from the pre_set, our
algorithm takes less running time than other algorithms.
It should be noted that the number of elements present in
pre_set(X′) is usually lesser than the number of elements
in X′\Ι. We have also incorporated several optimization
techniques and one such technique is itemset ordering
which is explained in the next section.

B. Itemset Ordering
 The order in which the items are processed play a vital
role in reducing the amount of computation in the depth
first exploration of the search space. The aim is to
reduce, as soon as possible, the elements in the post_set
which limits the depth of the search space tree and also to
reduce the number of elements scanned in pre_set for
duplicate detection. To accomplish this, we sort all the
post_set elements in their support ascending order and the
processing is carried out in the same order i.e. items with
small support are processed first. Also, all the items are
sorted with respect to its support and are remapped to
continuous integer space starting from zero. While
processing item i, all the elements that succeed i are
placed in pre_set in their ascending order and all the
elements that precede i are placed in the post_set in
descending order. The advantage of ordering all the
elements in the pre_set in their support descending order
and all the elements in the post_set in their support
ascending order is two fold. Firstly, it reduces the
computations needed for duplicate detection and
secondly, it reduces the computations in computing
closures as explained below. Order preserving algorithm

builds the generator by adding various elements from
post_set to closed_set and the validity of the generator is
tested using elements in the pre_set. If the generator
satisfies minimum support and is not a subset of any of
the elements in the pre_set then the generator will lead to
a closed itemset. By ordering the post_set elements in the
support ascending order, we reduce the post_set items to
the maximum extent in every closure computation and
this limits the depth of the recursive tree. Also, since the
items in the post_set are reduced to minimum, it saves the
computation in every level of the search space tree. Note
that, all the elements in the post_set are processed for
subset checking with g(closed_set) for computing the
closure. By ordering the elements of pre_set in their
support descending order, we considerably reduce the
total number of elements processed for duplicate
detection. The concept is based on the following fact: “a
generator of the closed itemset is more likely to be the
subset of items with high support than the items with low
support”. The ordering of elements in the post_set in its
support ascending order not only save the amount of
computation involved in computing the closure but also
reduces the items processed from pre_set in detecting
duplicate generators.

C. OP-MAX* Pseudocode
 This section presents OP-MAX* pseudocode. The
algorithm takes two parameters as input: transactional
dataset, and the minimum support value and it output all
the maximal itemsets that satisfy min-support constraint.

INPUT: transactional dataset, min-support
OUTPUT: all maximal itemsets satisfying support
constraints
1. Compute F1 (frequent-1 items}, sort F1 items based

on their support and map to continuous integer space
2. " i Î F1
3. pre_set = { i′ Î F1 | i′ f i }
4. closed_set = null
5. post_set =i ∪ { i′ Î F1 | i′ p i }
6. reorder the vertical bit-vector space such that
 supporting transactions of i are consecutive
 in its bit-vector space.
7. tid_setc = { set of transactions supporting

closed_set }
8. OP-MAX*(post_set, closed_set, pre_set, tid_setc)

9. OP-MAX*(post_set, closed_set, pre_set, tid_setc)
10. {
11. while (post_set!=null)
12. z: i′′=min(post_set)
13. tid_setg = tid_setc ∩ g(i′′)
14. if | tid_setg |>min_support &&

 (" j Î pre_set, tid_setg Ë g(j))
15. write closed_set, post_set,
 pre_set ∪ i′′, tid_setc to stack
16. closed_set=closed_set ∪ i′′
17. " k Î post_set
18. if tid_setg Í g(k)
19. closed_set=closed_set ∪ k
20. post_set=post_set \k
21. endif

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

374

22. tid_setc = tid_setg
23. write closed_set to disk
24. else
25. if (post_set!=null) goto z: endif
26. endif
27. if (post_set==null && stack is not empty)
28. if $ r Î pre_set and
 support(closed_set ∪ r) > minsupp
29. discard the closed_set
30. else
31. output the closed_set as maximal

itemset
32. endif
33. pop from stack to closed_set, preset,
 post_set and tid_setc
34. endif
35. if (closed_set==null)
36. return
37. endif
38. endwhile
39. }

D. Pseudocode Description
 The algorithm uses three sets (pre_set, post_set and
closed_set) as used in [2]. Besides, it uses three sets F1
and tid_set. F1 is used to store the set of frequent-1 items
whereas tid_set is used to store the set of supporting
transactions of the current closed itemset The algorithm
uses a stack to store the necessary information for
backtracking and the stack structure contains four sets
(pre_set, post_set, closed_set and tid_set). Whenever, an
extension of closed itemset is found to be closed, the
previous itemset is pushed to the stack along with its
pre_set, post_set and tid_set (line no 15). For example,
let X and Y be a closed itemset and Y Ê X. Whenever Y
is generated, X will be pushed to stack. When X is
popped, all other itemsets Y′ will be generated where Y′ ≠
Y and Y′ Ê X. After popping from the stack, if the
closed_set is null, the procedure returns. The condition
indicates that all closed itemsets that start with the item i
are generated. It should be noted that the associated
post_set of all the leaf nodes of the depth first search tree
is empty and all leaf nodes form a set of closed maximal
itemsets. Since the subset of leaf nodes form a set of
maximal itemsets, we incorporate maximality checking
(line no 28-32) whenever we pop from the stack. Before
we pop from the stack, we check whether closed_set ∪ i
is frequent where i Î pre_set. If Ø$ i such that
closed_set ∪ i is frequent, we output the closed
itemset as maximal itemset. The existence of i, such
that closed_set ∪ i is frequent, indicates that there
exists another closed itemset X and X is a superset to
current closed_set. Hence the current closed_set is not
maximal and is discarded.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

 We have implemented our algorithm using C
language and the code was compiled using 32-bit
Microsoft Visual C++ compiler. All the experiments were
conducted on Pentium 4 machine with 1 GB of main
memory loaded with windows XP operating system. The

executables of other algorithms were obtained from the
respective authors. The description of the datasets used
in our experiments is given in Table 1. Among the
datasets, gazelle (also known as BMS Webview) is a real
dataset derived from click-stream data and accidents
dataset contains (anonymized) traffic accident data.
Connect and chess datasets are mathematically structured
datasets derived from their respective game types.
T25I20D10k and T10I4D10k datasets are synthetic
datasets generated from IBM synthetic dataset generator.
The dataset generator is downloaded from Illimine
project’s website. For TxIyDz, x indicates the average
transaction length, y indicates the average itemset length
and z indicates the total number of transaction instances.

Table 1. Datasets Used

Sl.No Dataset Name Total
Items

Total
Transactions

1 gazelle 497 59601
2 accidents 468 340183
3 connect 42 8196
4 pumsb-star 7117 49046
5 chess 75 3196
6 retail 16470 88162
7 T25I20D10k 1000 10000
8 T10I4D10k 1000 10000

To obtain the accurate peak memory usage of executions,
we have written our own stub code using windows
process library API that will fetch the main memory
usage statistics whenever a process is terminated. Since
we extract the needed information from the windows
kernel itself, the load made by this program on the
memory and the processor is completely negligible. We
have checked the running times while running this piece
of code in background and while this software was not
running in background. The observed differences are
only in microseconds and in most cases we didn’t observe
any difference. The experimental results given in Table 2
show that OP-MAX* algorithm takes less running time
than other algorithms in most cases. Similarly, Table 3
and Table 7 show the total running time taken for
accident and pumsb-star dataset respectively.

Table 2: Total Running time taken for gazelle dataset
Supp-

ort
Running time in Seconds (gazelle)

FP-MAX AFOPT OP-MAX* MAFIA
59 0.796 2.312 0.609 4.453
54 0.813 2.375 0.75 4.625
48 0.828 2.469 1.031 4.859
42 0.906 2.672 1.781 5.328
36 1.312 3.5 4.14 5.828
30 2.61 6.656 5.719 10.312
24 1.297 13.641 6.907 14.985
18 2.39 37.812 12.016 33.922
12 3.141 43.484 32.422 52.250
6 33.609 102.609 59.843 65.734
1 573.031 1109.094 29.407 507.48

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

375

Table 3: Total Running time for accidents dataset
Supp-

ort
Running time in Seconds (accidents)

FP-MAX AFOPT OP-MAX* ECLAT-
MAX

75 32.906 49.313 5.172 22.891
70 32.953 49.484 6.766 22.937
65 33.031 49.703 12.14 23.078
60 33.172 50.047 24.188 23.234
55 33.234 50.297 30.109 23.5
50 33.375 50.906 53.156 23.875

The data given in table 4 shows the peak main memory
usage of different algorithms and the experimental data
clearly shows that OP-MAX* takes less amount of main
memory for its execution. Table 5 shows the peak page
file usage data and OP-MAX* clearly outperforms its
competitors. The dataset connect is highly dense and
from the results given in Table 6, our algorithm
enumerates all maximal itemsets with very less memory.
The other algorithms FP-MAX, LCM-MAX and MAFIA
takes 2 times, 3 times, and 18 times more memory than
taken by OP-MAX* algorithm respectively for a support
value of 70. Table 7 and Table 8 show the results for
pumsb_star dataset while Table 9 presents the results of
chess dataset. Similaly, Table 10, Table 12 and Table 13
show the results obtained from synthetic datasets.

Table 4: Peak Main memory usage for accidents dataset.
Supp-

ort
Peak Main-Memory usage in Bytes

FP-MAX AFOPT OP-MAX* Eclat
59 2109440 2109440 1597440 53608448
54 2183168 2260992 1724416 53604352
48 2355200 2703360 1851392 53624832
42 3084288 4222976 1978368 53751808
36 3665920 5140480 2060288 53792768
30 5218304 8466432 2150400 53878784

Table 5: peak page file usage for accidents dataset

Supp-
ort

Peak Page File usage in Bytes
FP-MAX AFOPT OP-MAX* Eclat

59 2453504 1634304 1253376 53825536
54 2453504 1830912 1388544 53825536
48 2453504 2224128 1523712 53825536
42 3043328 3776512 1658880 53891072
36 4157440 4694016 1748992 53956608
30 6389760 8036352 1839104 54022144

Table 6: Peak Memory usage for connect dataset

Supp-
ort

Peak memory usage in Bytes
FP-MAX LCM OP-MAX* Mafia

70 2150400 12226560 933888 17510400
65 2203648 12730368 950272 17551360
60 2293760 13512704 978944 17608704
55 2375680 13783040 995328 17625088
50 2506752 14176256 1003520 17645568

Table 7: Total Running time for pumsb-star dataset
Supp-

ort
Running time in Seconds

FP-MAX AFOPT OP-MAX* Mafia
55 9.687 12.219 1.39 34.781
50 9.688 12.266 1.703 34.844

45 9.828 12.39 2.813 34.937
40 9.859 12.547 4.828 35.031
35 9.938 12.797 9.25 35.156

Table 8: Peak Memory usage for pumsb_star dataset

Supp-
ort

Memory usage in Bytes
FP-MAX AFOPT OP-MAX* Mafia

55 2347008 2138112 843776 17186816
50 2670592 2293760 892928 17297408
45 3403776 2781184 970752 17448960
40 4149248 3379200 1028096 17559552
35 5173248 4612096 1089536 17686528

Table 9: Peak Memory usage for Chess dataset

Supp-
ort

Memory Usage in Bytes
OP-

MAX*
LCM-
MAX

FP-MAX Mafia

959 602112 4091904 10166272 21082112
799 602112 4104192 17608704 38432768
639 602112 4173824 33026048 74416128
479 602112 4308992 71979008 1.59E+08
319 618496 4304896 175685632 3.42E+08

Table 10: Total running time for T25I20D10K dataset
Supp-

ort
Running Time in Seconds

OP-
MAX*

ECLAT
MAX

AFOPT
-MAX

FP-MAX

50 5.594 6.578 12.641 11.141
40 7.156 9.453 13.094 11.25
30 10.828 10.485 15.14 16.485
20 23.094 11.765 12.828 9.015
10 155.062 435.688 26.719 16.5

Table 11: Peak Memory Usage for T25I20D10k dataset
Supp-

ort
Memory Usage T25I20D10k

OP-
MAX*

ECLAT
MAX

AFOPT
-MAX

FP-MAX

50 1568768 4739072 3960832 8486912
40 1605632 4857856 4370432 8622080
30 1650688 4935680 5210112 8815592
20 1695744 5570560 6959104 9043968
10 1748992 9912320 19210240 10031104

Table 12: Total running time for T10I4D10k dataset
Supp-

ort
Running Time in Seconds

OP-
MAX*

ECLAT
MAX

AFOPT
-MAX

Mafia

5 3.468 1.344 1.906 5.203
4 4.422 1.453 2.188 9.101
3 6.765 1.765 2.703 23.115
2 15.047 3.516 4.188 29.26
1 7.953 2249.188 13.203 404.985

Table 13: Peak main memory usage for retail dataset

Supp-
ort

Memory Usage in Bytes
OP-

MAX*
ECLAT
MAX

AFOPT
-MAX

FP-MAX

793 1835008 9728000 3969024 3436544
705 1998848 9834496 4063232 3629056
617 2289664 9900032 4288512 3969024
528 2719744 10100736 4526080 4493312

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009

376

440 3346432 10006528 4780032 5079040
352 4448256 10321920 5103616 6082560

Table 14: Total running time taken for retail dataset
Supp-

ort
Time RETAIL

OP-
MAX*

ECLAT
MAX

AFOPT
-MAX

FP-MAX

793 0.953 2.766 6.969 3.906
705 1.078 2.781 6.984 3.844
617 1.297 2.859 7.032 3.953
528 1.656 2.969 7.078 4
440 2.438 3.156 7.109 3.938
352 3.844 3.485 7.141 3.922

V. CONCLUSION

 We have proposed OP-MAX*, a fast and memory
efficient algorithm for mining maximal frequent itemsets.
Though our algorithm takes less memory than other
algorithms, the problem that OP-MAX* takes more
running time for some cases, is yet to be solved.
Currently, we are investigating other optimization
techniques to further reduce the running time of the
algorithm.

ACKNOWLEDGMENT

 We wish to thank C. Luchesse and S. Orlando for
responding to our queries. We also thank Prof. Bart
Goethls for providing us the datasets and for supporting
the FIMI website. We thank the authors of MAFIA for
responding to our queries.

REFERENCES
[1] Liping Ji, Kian-Lee Tan,K H. Tung, "Compressed

Hierarchical Mining of Frequent Closed Patterns from
Dense Data Sets," IEEE Trans. on Knowledge and Data
Engineering, Vol 19, No.9, Sept 2007.

[2] C. Lucchese,S. Orlando and R. Perego, "Fast and Memory
Efficient Mining of Frequent Closed Itemsets", IEEE
Transactions on Knowledge and Data Engineering, VOL
18, No 1, pages 21-36, January 2006.

[3] S. Selvan and R V Nataraj, “Efficient Mining of Maximal
Patterns using Order Preserving Generators”, in proc. 16th
Intl. Conf. on Advanced Computing and Communications,
Chennai, India, Dec. 2008

[4] S. Selvan and R V Nataraj, “Maximal Itemsets Mining
using Closed Transaction Sets”, Under Review for
publication.

[5] Mingjun Song, Sanguthevar Rajasekaran, "A Transaction
Mapping Algorithm for Frequent Itemsets Mining", IEEE
Transactions on Knowledge and Data Engineering,, VOL
18, No 4, pages 472-481, April 2006.

[6] G. Grahne, J. Zhu, “Fast Algorithms for Frequent Itemset
Mining Using FP-Trees”, IEEE Transactions on
Knowledge and Data Engineering, Vol 17, No 10, pages
1347-1362, October 2005.

[7] D. Burdick, M.Calimlim ,J.Flannick, J.Gehrke,Y.Yiu,
"MAFIA: A Maximal Frequent Itemset Algorithm", IEEE
Transactions on Knowledge and Data Engineering, VOL
17, No 11,Pages 1490 - 1504, November 2005.

[8] Guizhen Yang, “The complexity of Mining Maximal
Frequent Itemsets and Maximal Frequent Patterns”,
KDD’04, Seattle, Washington, August 2004.

[9] Jinyan Li, Guimei Liu, Haiquan Li, Limsoon Wong,
"Maximal Biclique Subgraphs and Closed Pattern Pairs of
the Adjacency Matrix: A One-to-One Correspondence and
Mining Algorithms," IEEE Trans. Knowledge and Data
Engineering, vol. 19, No. 12, pp. 1625-1637, Dec. 2007.

[10] Dao-l Lin and Zvi M. Kedem, "PINCER-SEARCH: An
Efficient Algorithm for Discovering the Maximum
Frequent Set", IEEE Trans. on Knowledge and data
Engineering, VOL 14, No. 3, June 2002.

[11] N. Pasquier, Y. Bastide, R. Taouil, and L.Lakhal,
"Discovering Frequent Closed Itemsets for Association
Rules", Proc. 7th Int. Conf. Database Theory (ICDT'99),
pages 398-416, January 1999.

[12] R. Agrawal, T. Imielinski, and A. Swami. "Mining
association rules between sets of items in large databases",
In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pages 207-216,
Washington, DC, May 1993.

[13] T. Uno, M. Kiyomi, and H. Arimura, "LCM ver.2:
Efficient mining algorithms for Frequent/closed/maximal
itemsets," In Proc. IEEE ICDM’04 Workshop FIMI’04,
2004.

[14] K. Gouda, M.J.Zaki, “GenMax: An Efficient Algorithm for
Mining Maximal Frequent Itemsets”, Journal of Data
Mining and Knowledge Discovery, pages 1-20, 2005

[15] Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao, “Mining
Frequent Pattern without candidate Generation : A
Frequent Pattern Approach” Journal of Data Mining and
Knowledge Discovery , Springer, pages 53-87, 2004.

[16] G.Liu, “Supporting Efficient and Scalable Frequent Pattern
Min-ing,” PhD dissertation, Dept. of Computer Science.,
Hong Kong University., May 2005.

© 2009 ACADEMY PUBLISHER

