
Identificaton and Evaluation of Code Using Refactoring Method

Amalan S A

, Yuvaraj N

*1
 Assistant Professor

Excel Engineering College,Komarapalayam,Tamil Nadu.India

*2
Assistant Professor

 Excel Engineering College,Komarapalayam,Tamil Nadu.India

Abstract— Software testing is a critical element of software

quality assurance that represents the ultimate review of

specifications, design and coding. In computer programming,

code smell is the symptom in the source code of a program

indicating a deeper problem. Code smells are usually not bugs,

they are not technically incorrect and don't currently prevent the

program from functioning. Instead, they indicate weaknesses in

design that may be slowing down development or increasing the

risk of bugs or failures in the future. Code and design smells are

poor solutions to recurring implementation and design problems.

Bad smells are signs of potential problems in code. Detecting and

resolving bad smells remain time-consuming for software

engineers .Numerous bad smells have been recognized, the

sequences in which the detection and resolution of different kinds

of bad smells are performed rarely because software engineers

do not know how to optimize sequences or determine the benefits

of an optimal sequence. So, a new sequence for different kinds of

bad smells has been implemented, to simplify the detection and

resolution of bad smells based on refactoring method. This

system reduces the code complexity occurred in coding

environment and improves the quality of software.

Keywords— Scheme, bad smell, software refactoring, effort,

detection, schedule.

I. INTRODUCTION

Data refactoring is the process of changing a

software system in such a way that it does not alter the

external behaviour of the code yet improves its internal

structure. It includes improvement of code readability and

reduced complexity to improve the maintainability of the

source code, as well as a more expressive internal architecture

or object model to improve extensibility. Refactoring aim to

reverse this decline in software quality by applying a series of

small, behaviour preserving transformations each of which

improves a certain aspect of the system. Software systems

have to be flexible in order to evolving requirements.

Introduction about refactoring is defined by the

benefits, problems and also guidelines for applying refactoring

methods when to refactor, which techniques to use, and how

to apply them, and when to stop. Java and some refactoring

methods are used for modifying the techniques in Delphi.

Most software spends far longer in maintenance more than

90% of the program lifetime. Maintenance means fixing bugs,

changing the program behavior to meet changing

requirements, and adding new features. All of these activities

mean modifying or extending existing code. So the readability

and maintainability of the code base is the paramount features

of any program development.

Before refactoring a section of code, a solid set

of automatic unit tests is needed. The tests should demonstrate

in a few seconds that the behavior of the module is correct.

The process is then an iterative cycle of making a small

program transformation, testing it to ensure correctness, and

making another small transformation. If at any point a test

fails, the last small change is undone and repeated in a

different way. Through many small steps the program moves

from where it was to where want it to be. Proponents of

extreme programming and other agile methodologies describe

this activity as an integral part of the software development

cycle. code is easy to read and the intent of its author is easy

to grasp. This might be achieved by reducing large monolithic

routines into a set of individually concise, well-named, single-

purpose methods. It might be achieved by moving a method to

a more appropriate class, or by removing misleading

comments. Extensibility is easier to extend the capabilities of

the application if it uses recognizable design patterns, and it

provides some flexibility where none before may have

existed.

II. BACKGROUND

 Up to 75% of the costs associated with the

development of software systems occur post-deployment

during maintenance and evolution. Software refactoring is a

133

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10232

process which can significantly reduce the costs associated

with software evolution. Refactoring is defined as internal

modification of source code to improve system quality,

without change to observable behaviour. Tool support for

software refactoring attempts to further reduce evolution costs

by automating manual, error-prone and tedious tasks.

Although the process of refactoring is well-defined, tools

supporting refactoring do not support the full process.

Existing tools suffer from issues associated with the level of

automation; the stages of the refactoring process supported or

automated the subset of refactoring that can be applied, and

complexity of the supported refactoring. The work offers the

following contributions to resolve the above problem:

Relationships are analysed among different kinds of bad

smells and their influence on detection and resolution

sequences. The need to arrange detection and resolution

sequences of different kinds of bad smells using a motivating

example are also identified. A resolution sequence for

commonly occurring bad smells are recommended.

III. METHODOLOGY

 The framework consists of detecting the clone,

evaluating the bad smell, resolution sequence of bad smell

using refactoring method .

A. Detecting the clone

 In this module for detecting bad smells

equipped with bad smell detection tools and automatic or

semiautomatic refactoring method for cleaning up bad smells.

First develop a detection tool to identify a specific type of bad

smell is clone(a detection tool usually uncovers only one kind

of bad smell, e.g., clone detection tools is insensitive to bad

smells other than clones). The detection tool proposes initial

results that require manual confirmation. Once the detected

bad smell is confirmed, the software engineer decides how to

refactor it. Selected refactoring rules are manually or semi-

automatically applied to the bad smells with the help of

refactoring tools. Then, the software engineer moves on to the

next kind of bad smells detection and repeats the process until

all kinds of bad smells have been detected and resolved. As a

result, different kinds of bad smells are detected and resolved

one after the other. Using kind level scheme to detect one

after another bad smells.

B. Evaluating the bad smells

 In this module evaluating taken for the

following bad smell,

Long Method

The longer a method is, the harder it is to read or

modify. Consequently, a long and complex method is divided

into short and well-named methods with refactoring rules e.g.

extract Method. As a solution to Long Method, some parts of

the method may be extracted as new methods. Usually the

extracted new methods are called within the old one in the

original location; thus, the extraction does not shorten the

parameter list.

Large Class

Large classes usually try to take too many

responsibilities, making them complex and confusing. To

improve their readability and maintainability, large classes is

divided into smaller ones, each for a single responsibility. To

eliminate Large Class, large classes are decomposed into a

few small ones On the other hand, long methods are

decomposed into a few small methods to dispel Long Method.

Consequently, resolving Large Class and Long Method leads

to redistribution of responsibilities at class and method levels,

respectively. Carrying out the redistribution of responsibilities

from the bottom up makes for reasonable and thorough

redistribution.

C. Resolution sequence of bad smells using refactoring

method

In this module develop the graph to resolve the bad

smells here assume all bad smells of the same kind would be

detected and resolved before the next kind of bad smell is

detected.

Fig 2.1: Sequence of bad smells

 The sequence of code smells where related with

each other and has combined with one another. It has specific

orrelation among each test smells. Based on the above

sequence the test smell is detection and then the code is under

resolution based on the refactoring method.The refactoring

method ignore the duplication code and useless code in the

application.

134

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10232

Fig 2.3: Redundant edge
Remove more number of vertices for one single

feature can removed by the following algorithm propose a

new algorithm for the final resolution sequences removing

redundant edges from Fig .For convenience, define the

following symbols p(v1; v2) A path from vertex v1 to vertex

v2 containing more than one edge (v1; v3) A direct edge from

vertex v1 to vertex v3.

An edge e (v1; v3) is redundant if and only if there is another

path p(v1; v3) in parallel to e(v1; v3). Removing edge e(v1;

v3) would not change the topological order of the vertices, but

removing any other edge from Fig. result in different

topological order. If the algorithm is applied to the graph in

Fig, the algorithm would remove e (v1; v3) because the path

p(v1; v2; v3) is parallel to e(v1; v3). Other edges would be

retained because no path is longer than 1 in parallel to e(v1;

v2), e(v2; v3), or e(v2; v4).

Using this refactoring method the coding has been

changed and the complexity is reduced in the coding,

execution time consuming has been reduced. Then code lead

the software to de standard and also improve the code quality

based on this refactoring method.

IV. PERFORMANCE EVALUATION

 This section describes the methodology results for

detecting and resolution for bad smells.

INPUT

 In this system, the process of detecting and resolving

the bad smells from the coding environment. So some sample

java program is taken and resolved through the refactoring

method.

OUTPUT

 Then the clone is detected from the given sample

program and the coding detail is evaluated. The result is given

below .Using search based refactoring new features like

coupling also detected and then refactored to minimize the

class function and also reduce the code complexity.

 Code is reduced then the execution and performance

level also increase .Then, the software quality is improved and

metrics is calculated.

Table 1: Detecting the clone

Table 4.1: Evaluating the bad smells

Fig 4.2:Comparison About Before And After

Refactoring

APPLICATIONS

 Value for Cyclomatic

Complexity

Before

Refactoring

 After

Refactoring

1.Calculator-

APP

 a. Sum

 b. Sub

18

16

2.Banking – APP

a. Transaction

 b. Withdraw

24

16

3.Employee

Detail

 a. Insert Values

 b.View Table

20

15

4.Game –APP

 a.Puzzle

14

10

135

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10232

V. CONCLUSIONS

In this project a new sequence has been implemented

based upon bad smells are detection. The evaluation of bad

smells are resolution based on the refactoring method by using

integrated development environment.

The contribution of the paper, to reduce the code

complexity, produce software quality and reduce the time

consuming for execution of the code. Some of the effort range

also measured and calculated based upon this new sequence

of bad smells. So the complexity of the code is reduced and

execution of the code has time consuming.

References

[1] Hui Liu and Weizhong Shao, “Schedule of Badsmell

Detection and Resolution:A New Way to Save Effort,” IEEE

Trans. Software Eng., vol. 38, no. 1 Jan/Feb. 2012.

[2] W.F. Opdyke, “Refactoring Object-Oriented Frameworks,”

PhD

dissertation, Univ. of Illinois at Urbana-Champaign, 1992.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

Refactoring: Improving the Design of Existing Code.Addison

Wesley Professional, 1999.

[4] W.C. Wake,Refactoring Workbook.Addison Wesley, Aug.

2003.

[5] http://wiki.java.net/bin/view/People/SmellsToRefactorings,

2011.

[6] W.G. Griswold and D. Notkin, “Automated Assistance for

Program Restructuring,”ACM Trans. Software Eng. and

Methodol-ogy,vol. 2, no. 3, pp. 228-269, July 1993.

[7] F. Tip, A. Kiezun, and D. Baeumer, “Refactoring for

General-ization Using Type Constraints,” Proc. 18th Ann.

Conf. Object-Oriented Programming Systems, Languages, and

Applications,pp. 13-26, Oct. 2003.

[8] T. Mens, N.V. Eetvelde, and S. Demeyer, “Formalizing

Refactorings with Graph Transformations,” J. Software Main-

tenance and Evolution: Research and Practice, vol. 17, no. 4,

pp. 247-276, 2005.

[9] R. Koschke, “Identifying and Removing Software

Clones,”Soft-ware Evolution,T. Mens and S. Demeyer, eds.,

pp. 15-36, Springer, 2008.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A

Multi-Linguistic Token Based Code Clone Detection System

for Large Scale Source Code,” IEEE Trans. Software Eng.,

vol. 28, no. 7, pp. 654-670, July 2002.

[11] S. Ducasse, M. Rieger, and S. Demeyer, “A Language

Independent Approach for Detecting Duplicated Code,”Proc.

Int’l Conf. Software Maintenance,pp. 109-118, 1999.

[12] E. Burd and J. Bailey, “Evaluating Clone Detection Tools

for Use During Preventative Maintenance,”Proc. Second IEEE

Int’l

Work-shop Source Code Analysis and Manipulation,pp. 36-43,

Oct. 2002.

[13] B.S. Baker, “On Finding Duplication and Near-

Duplication in Large Software Systems,”Proc. Second IEEE

Working Conf. Reverse Eng.,pp. 86-95, July 1995.

[14] R. Wettel and R. Marinescu, “Archeology of Code

Duplication: Recovering Duplication Chains from Small

Duplication Frag-ments,”Proc. Seventh Int’l Symp. Symbolic

and Numeric Algorithms

 [15] Eclipse Foundation. Eclipse 3.4.2.

http://www.eclipse.org/emft/ projects/, 2011.

[16] Microsoft Corporation. Microsoft Visual Studio 2008.

http:// www.microsoft.com/, 2011.

[17] JetBrains Company. IntelliJ IDEA 8.

http://www.jetbrains.com/ idea/, 2011.

[18] E. Mealy and P. Strooper, “Evaluating Software

Refactoring tool Support,”Proc. Australian Software Eng.

Conf.,pp. 331-340, 2006.

[19] E. Murphy-Hill and A.P. Black, “Refactoring Tools:

Fitness for

Purpose,”IEEE Software,vol. 25, no. 5, pp. 38-44, Sept./Oct.

2008. [20] E. Mealy, D. Carrington, P. Strooper, and P. Wyeth,

“Improving

Usability of Software Refactoring Tools,”Proc. Australian

Software Eng. Conf.,pp. 307-318, Apr. 2007.

[21] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler, “A

Novel Approach to Optimize Clone Refactoring

Activity,”Proc. Eighth Ann. Conf. Genetic and Evolutionary

Computation,pp. 1885-1892, July 2006.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A

Multi-Linguistic Token Based Code Clone Detection System

for Large Scale Source Code,” IEEE Trans. Software Eng.,

vol. 28, no. 7, pp. 654-670, July 2002.

[11] S. Ducasse, M. Rieger, and S. Demeyer, “A Language

Independent Approach for Detecting Duplicated Code,”Proc.

Int’l Conf. Software Maintenance,pp. 109-118, 1999.

[12] E. Burd and J. Bailey, “Evaluating Clone Detection Tools

for Use During Preventative Maintenance,”Proc. Second IEEE

Int’l

Work-shop Source Code Analysis and Manipulation,pp. 36-43,

Oct. 2002.

[13] B.S. Baker, “On Finding Duplication and Near-

Duplication in Large Software Systems,”Proc. Second IEEE

Working Conf. Reverse Eng.,pp. 86-95, July 1995.

[14] R. Wettel and R. Marinescu, “Archeology of Code

Duplication: Recovering Duplication Chains from Small

Duplication Frag-ments,”Proc. Seventh Int’l Symp. Symbolic

and Numeric Algorithms

for Scientific Computing, p. 63, 2005.

[15] Eclipse Foundation. Eclipse 3.4.2.

http://www.eclipse.org/emft/ projects/, 2011.

[16] Microsoft Corporation. Microsoft Visual Studio 2008.

http:// www.microsoft.com/, 2011.

[17] JetBrains Company. IntelliJ IDEA 8.

http://www.jetbrains.com/ idea/, 2011.

136

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10232

