

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE TITLE

IC TEST METHODOLOGIES AND VALIDATION USING ATE TOOLS

PREPARED BY:

Mr. S. Harikrishna,

Assistant Professor/ECE

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University – Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

IC Test

Methodologies

and Validation

using ATE

Tools

Based on slides/material by...

- K. Masselos http://cas.ee.ic.ac.uk/~kostas
- J. Rabaey http://bwrc.eecs.berkeley.edu/Classes/IcBook/instructors.html
 "Digital Integrated Circuits: A Design Perspective", Prentice Hall
- D. Harris http://www.cmosvlsi.com/coursematerials.html
 Weste and Harris, "CMOS VLSI Design: A Circuits and Systems Perspective", Addison Wesley

Recommended Reading:

- J. Rabaey et. al. "Digital Integrated Circuits: A Design Perspective": Design Methodology Insert H
- Weste and Harris, "CMOS VLSI Design: A Circuits and Systems Perspective": Chapter 9

Design for Test Digital Integrated Circuit Design Topic 12 - 1 Design for Test Digital Integrated Circuit Design Topic 12 - 2

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

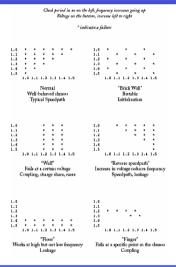
Testing

- Testing is one of the most expensive parts of chips
 - Logic verification accounts for > 50% of design effort for many chips
 - Debug time after fabrication has enormous opportunity cost
 - Shipping defective parts can sink a company
- Example: Intel FDIV bug
 - · Logic error not caught until > 1M units shipped
 - Recall cost \$450M (!!!)

Logic Verification

- Does the chip simulate correctly?
 - Usually done at HDL level
 - Verification engineers write test bench for HDL
 - > Can't test all cases
 - > Look for corner cases
 - > Try to break logic design
- Ex: 32-bit adder
 - Test all combinations of corner cases as inputs:
 - $> 0, 1, 2, 2^{31}-1, -1, -2^{31}$, a few random numbers
- Good tests require ingenuity

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)


Perundurai, Erode-638057

Silicon Debug

- Test the first chips back from fabrication
 - If you are lucky, they work the first time
 - If not...
- · Logic bugs vs. electrical failures
 - Most chip failures are logic bugs from inadequate simulation
 - · Some are electrical failures
 - > Crosstalk
 - > Dynamic nodes: leakage, charge sharing
 - > Ratio failures
 - A few are tool or methodology failures (e.g. DRC)
- · Fix the bugs and fabricate a corrected chip

Shmoo Plots

- How to diagnose failures?
 - · Hard to access chips
 - > Picoprobes
 - > Electron beam
 - > Laser voltage probing
 - > Built-in self-test
- Shmoo plots
 - · Vary voltage, frequency
 - Look for cause of electrical failures

Design for Test Digital Integrated Circuit Design Topic 12 - 5 Design for Test Digital Integrated Circuit Design Topic 12 - 6

Manufacturing Test

- A speck of dust on a wafer is sufficient to kill chip
- Yield of any chip is < 100%
 - Must test chips after manufacturing before delivery to customers to only ship good parts

Digital Ir

- Manufacturing testers are very expensive
 - · Minimize time on tester
 - Careful selection of test vectors

Design for Test

tester 12-7

Validation and Test of Manufactured Circuits

Goals of Design-for-Test (DFT)

Make testing of manufactured part swift and comprehensive

DFT Mantra

Provide controllability and observability

Design for Test Digital Integrated Circuit Design Topic 12 - 8

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

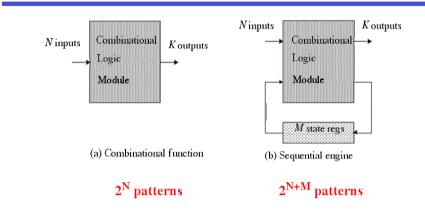
Perundurai, Erode-638057

Components of DFT strategy

- Provide circuitry to enable test
- Provide test patterns that guarantee reasonable coverage

Design for Test Digital Integrated Circuit Design Topic 12 - 7 Design for Test Digital Integrated Circuit Design Topic 12 - 8

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)



Perundurai, Erode-638057

Test Classification

- Diagnostic test
 - · used in chip/board debugging
 - defect localization
- "go/no go" or production test
 - Used in chip production
- Parametric test
 - x e [v,i] versus x e [0,1]
 - check parameters such as NM, Vt, tp, T

Design for Testability

Topic 12 - 10

Exhaustive test is impossible or unpractical

Design for Test Digital Integrated Circuit Design Topic 12 - 9

Design for Test

- Design the chip to increase observability and controllability
- If each register could be observed and controlled, test problem reduces to testing combinational logic between registers.
- Better yet, logic blocks could enter test mode where they generate test patterns and report the results automatically.

Digital Integrated Circuit Design

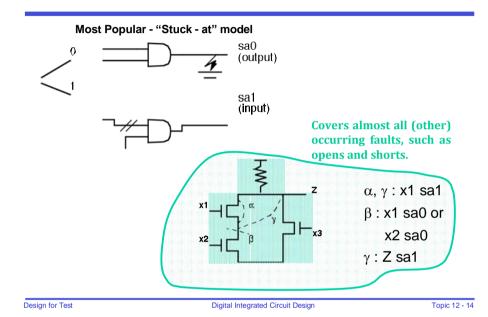
Controllability/Observability

- Combinational Circuits: controllable and observable relatively easy to determine test patterns
- Sequential Circuits: State!
 Turn into combinational circuits or use self-test
- Memory: requires complex patterns Use self-test

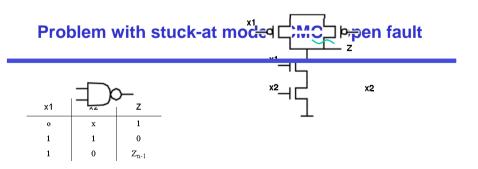
Design for Test

Design for Test Digital Integrated Circuit Design Topic 12 - 11 Design for Test Digital Integrated Circuit Design Topic 12 - 12

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)



Perundurai, Erode-638057


Generating and Validating Test-Vectors

- Automatic test-pattern generation (ATPG)
 - for given fault, determine excitation vector (called test vector) that will propagate error to primary (observable) output
 - · majority of available tools: combinational networks only
 - · sequential ATPG available from academic research
- Fault simulation
 - determines test coverage of proposed test-vector set
 - simulates correct network in parallel with faulty networks
- Both require adequate models of faults in CMOS integrated circuits

Fault Models

Design for Test Digital Integrated Circuit Design Topic 12 - 13

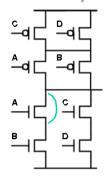
Problem with stuck-at model: CMOS short fault

o
'0'
'1'
'0'

Sequential
effect
Needs two
vectors to ensure

Design for Test Digital Integrated Circuit Design Topic 12 - 15 Design for Test Digital Integrated Circuit Design Topic 12 - 16

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)



Perundurai, Erode-638057

detection!

Other options: use stuck-open or stuck-short models

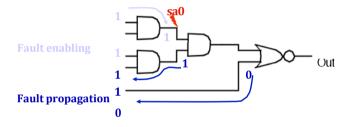
This requires fault-simulation and analysis at the switch or transistor level - Very expensive!

Causes short circuit between Vdd and GND for A=C=0, B=1

Possible approach: Supply Current Measurement (IDDQ) but: not applicable for gigascale integration

Design for Test Digital Integrated Circuit Design Topic 12 - 15 Design for Test Digital Integrated Circuit Design Topic 12 - 16

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)


Perundurai, Erode-638057

Test Pattern Generation

- Manufacturing test ideally would check every node in the circuit to prove it is not stuck.
- Apply the smallest sequence of test vectors necessary to prove each node is not stuck.
- Good observability and controllability reduces number of test vectors required for manufacturing test.
 - · Reduces the cost of testing
 - · Motivates design-for-test

Path Sensitization

Goals: Determine input pattern that makes a fault controllable (triggers the fault, and makes its impact visible at the output nodes)

Techniques Used: D-algorithm, Podem

Design for Test Digital Integrated Circuit Design Topic 12 - 17

Design for Test Digital Integrated Circuit Design Topic 12 - 18

Test Example

• A ₃	SA1 {0110}	SA0 {1110}	
 A₂ A₁ A₀ 	{1010} {111 {0100} {011 {0110} {011	0} 0} 1}	A_3 A_2 D D A_3 A_2
• n1 • n2	{1110} {0110}	{0110} {0100}	A_1 $n3$ $n3$

- n3 {0101} {0110}Y {0110} {1110}
- Minimum set: {0100, 0101, 0110, 0111, 1010, 1110}

Design for Test Digital Integrated Circuit Design Topic 12 - 19 Design for Test Digital Integrated Circuit Design Topic 12 - 20

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

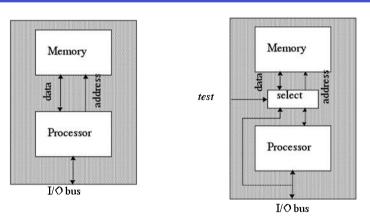
Test Approaches

- Ad-hoc testing
- Scan-based Test
- Self-Test

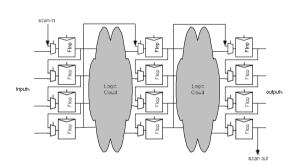
Problem is getting harder

- increasing complexity and heterogeneous combination of modules in system- on-a-chip.
- Advanced packaging and assembly techniques extend problem to the board level

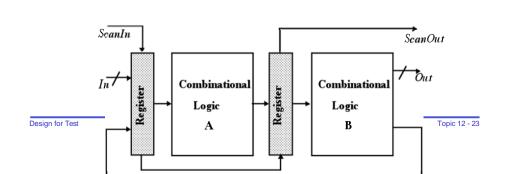
Design for Test Digital Integrated Circuit Design Topic 12 - 19 Design for Test Digital Integrated Circuit Design Topic 12 - 20



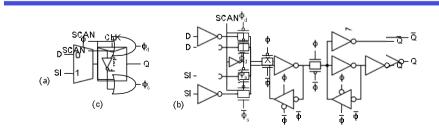
(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)


Perundurai, Erode-638057

Ad-hoc Test Scan


Inserting multiplexer improves testability

- · Convert each flip-flop to a scan register
 - Only costs one extra multiplexer
- Normal mode: flip-flops behave as usual
- Scan mode: flip-flops behave as shift register
- Contents of flops can be scanned out and new values scanned in

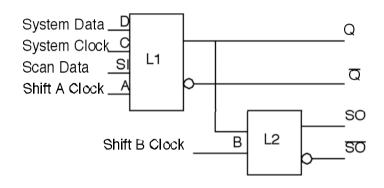


Design for Test Digital Integrated Circuit Design Topic 12 - 21 Design for Test Digital Integrated Circuit Design Topic 12 - 22

Scan-based Test

Scannable Flip-flops

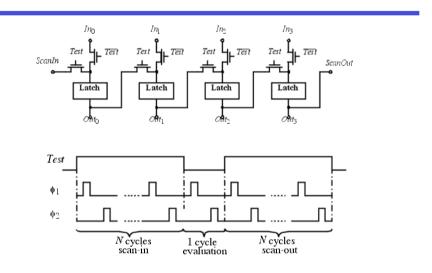
Design for Test Digital Integrated Circuit Design Topic 12 - 24



(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

Polarity-Hold SRL (Shift-Register Latch)

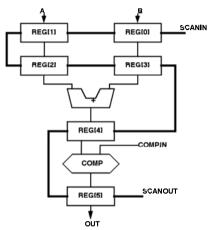


Introduced at IBM and set as company policy

Design for Test Digital Integrated Circuit Design Topic 12 - 25

Scan-Path Testing

Scan-based Test —Operation


Design for Test Digital Integrated Circuit Design Topic 12 - 26

Design for Test Digital Integrated Circuit Design Topic 12 - 27 Design for Test Digital Integrated Circuit Design Topic 12 - 28

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

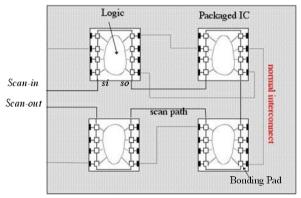
Perundurai, Erode-638057

Partial-Scan can be more effective for pipelined datapaths

Boundary Scan

- Testing boards is also difficult
 - Need to verify solder joints are good
 - > Drive a pin to 0, then to 1
 - > Check that all connected pins get the values
- Through-hold boards used "bed of nails"
- SMT and BGA boards cannot easily contact pins
- Build capability of observing and controlling pins into each chip to make board test easier

Design for Test Digital Integrated Circuit Design Topic 12 - 27 Design for Test Digital Integrated Circuit Design Topic 12 - 28


(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

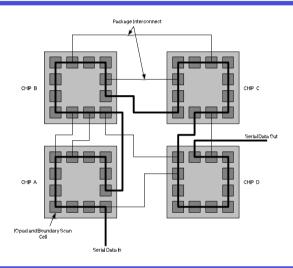
Boundary Scan (JTAG)

Printed-circuit board

Board testing becomes as problematic as chip testing

Design for Test Digital Integrated Circuit Design Topic 12 - 29

Design for Test


Digital Integrated Circuit Design

Topic 12 - 30

Boundary Scan Interface

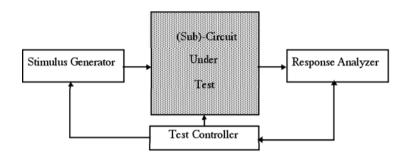
- Boundary scan is accessed through five pins
 - TCK: test clock
 - TMS: test mode selectTDI: test data in
 - TDO: test data out
 - TRST*: test reset (optional)
- Chips with internal scan chains can access the chains through boundary scan for unified test strategy.

Boundary Scan Example

Built-in Self-test

- Built-in self-test lets blocks test themselves
 - · Generate pseudo-random inputs to comb. logic
 - Combine outputs into a syndrome
 - With high probability, block is fault-free if it produces the expected syndrome

Design for Test Digital Integrated Circuit Design Topic 12 - 31 Design for Test Digital Integrated Circuit Design Topic 12 - 32



(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

Self-test PRSG

Rapidly becoming more important with increasing chip-complexity and larger modules

Linear Feedback Shift Register

- Shift register with input taken from XOR of state
- Pseudo-Random Sequence Generator

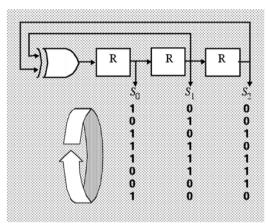
Step	Q
0	111
1	110
2	101
3	010
4	100
5	001
6	011
7	111 (repeats)

Design for Test Digital Integrated Circuit Design Topic 12 - 33

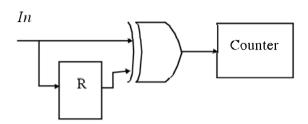
Design for Test Digital Integrated Circuit Design

Topic 12 - 34

Linear-Feedback Shift Register (LFSR)


Signature Analysis

Design for Test Digital Integrated Circuit Design Topic 12 - 35 Design for Test Digital Integrated Circuit Design Topic 12 - 36

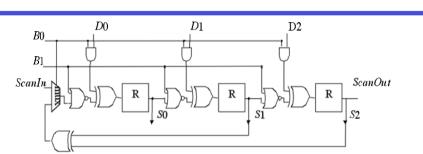

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

Pseudo-Random Pattern Generator

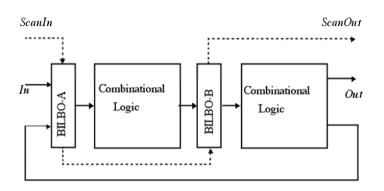
Counts transitions on single-bit stream = Compression in time

Design for Test Digital Integrated Circuit Design Topic 12 - 35 Design for Test Digital Integrated Circuit Design Topic 12 - 36



(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057


BILBO

B_0 B_1	Operation mode
1 1	Normal
0 0	Scan
1 0	Pattern generation or Signature analysis
0 1	Reset

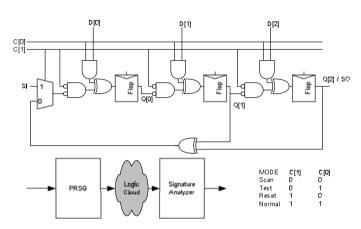
Design for Test Digital Integrated Circuit Design Topic 12 - 37

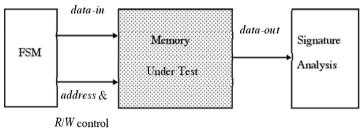
BILBO Application

Design for Test Digital Integrated Circuit Design Topic 12 - 38

BILBO

- Built-in Logic Block Observer
 - Combine scan with PRSG & signature analysis


Memory Self-Test


Design for Test Digital Integrated Circuit Design Topic 12 - 39 Design for Test Digital Integrated Circuit Design Topic 12 - 40

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

Patterns: Writing/Reading 0s, 1s, Walking 0s, 1s Galloping 0s, 1s

Design for Test Digital Integrated Circuit Design Topic 12 - 39 Design for Test Digital Integrated Circuit Design Topic 12 - 40

(Approved by AICTE - New Delhi, Permanently Affiliated to Anna University - Chennai Accredited by National Board of Accreditation (NBA), New Delhi and National Assessment & Accreditation Council (NAAC), Bangalore with 'A' Grade)

Perundurai, Erode-638057

Low Cost Testing

- If you don't have a multimillion dollar tester:
 - Build a breadboard with LED's and switches
 - · Hook up a logic analyzer and pattern generator
 - · Or use a low-cost functional chip tester

Summary

- Think about testing from the beginning
 - · Simulate as you go
 - · Plan for test after fabrication
- "If you don't test it, it won't work! (Guaranteed)"

TestosterICs

- Ex: TestosterICs functional chip tester
 - · Designed by clinic teams and David Diaz at HMC
 - Reads your IRSIM test vectors, applies them to your chip, and reports assertion failures

Design for Test Digital Integrated Circuit Design Topic 12 - 41 Design for Test Digital Integrated Circuit Design Topic 12 - 42

Design for Test Digital Integrated Circuit Design Topic 12 - 43